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MOLLIFIERS FOR GAMES IN NORMAL FORM AND THE
HARSANYI-SELTEN VALUATION FUNCTION

1. INTRODUCTION

Littlechild-Vaidya [1976] defined and studied ratio measures
of coalitions' "propensity to disrupt" in an n-person characteristic
function game. Th2 attendant difficulties with the choice of ratio
measures led to the introduction and development by Charnes-Rousseau-
Seiford [1978] of new incremental measures giving rise to a wide variety
of "disruption" and "mollifier" solution concepts free of various ratio
defects.

Shapley raised the question of the relation of these "mollifier"
concepts to the Harsanyi-Selten [1959] modification of von Neumann-
Morgenstern's [1953] construction of a characteristic function for games
in normal form to take better account of "disruption" or "threat" possibilities.

In this paper, we show for a large class of gimes that the
Harsanyi-Selten construction yields a constant mollifier. In general, it
can be non-superadditive when the von Neumann-Morgenstern function is
superadditive.

We then extend the "mollification"” concept to games in normal
form. In the extended theory, the Harsanyi-Selten construct is a constant
mollifier with the preceding non-superadditive impediment. It also fails
to take account of coalitional sizes. Our extended "homomollifier" concept

does and always yields a superadditive constant sum characteristic function.

2, COMPLEMENTS AND MOLLIFIERS

The concepts of complement and mollifier for n-person games in

characteristic function form were defined and studied in Charnes-Rousseau-




| Seiford [1978]. Since we will require some of these results and also as
motivation for our extended theory to games in normal form, we give the
following brief summary.

Let (N,v) be a characteristic function game where N = {1,2,...,n}

is the set of players and v is a characteristic function, i.e., a non-
negative function defined on the subsets of N with v(@) = 0. The complement
of a game v, denoted v, is defined by
v(S) = v(N) - v(N-S).
We have immediately that
(i) V=v (i.e., the complement transformation is involutory).
(ii) V(@) =0 and V(N) = v(N).

(iii) For two games u and v

* u+vs=u+v (i.e., the complement of a sum is the sum

of the complements).

While v will not necessarily be superadditive, even if v is
superadditive, v does inherit some of the structure of v.
Theorem 2.1:
(i) If v is monotone, i.e., ASB3v(A)< v(B), then v is monotone.
(ii) If g is strategically equivalent to v, i.e.,
g(S) = r.v(S) + ;E% o with r > 0, then g is strategically
ie
equivalent to v.

Theorem 2.2: The Shapley value of a game v and its complement v are identical,

i.e.,
¢, (v) = ¢i(\7) » ¥ ieN.
If we assume that v is superadditive, the structure of v becomes
more fixed. ;

Theorem 2.3: If v is superadditive, then




(i) v(S) > v(S) (W SEN).
(ii)  v(s) + v(N-S) > v(N). (WSEN).
(iii) v(SU T)> v(S) + v(T), whenever SNT = @,
(iv) v is superadditive iff v = v.

Corollary 2.3: v is constant sum iff

v(S) = v(S) for all SEN.

The value v(S) can be considered as a maximum feasible "goal"
of coalition S. It is the largest amount that they can reasonably "expect"
to get just as v(S) is the least they would "accept."

We, therefore, define a mollifier of a game v as any componentwise
convex combination of the function v and its complement v. In particular,
W,» 2 "constant" mollifier of v is defined for 0 < u < 1 by

wy (S) = u v(S) + (1 -u) v(s),
and a coalitional mollifier is defined by

W(S) =ug ¥(S) + (1-ug) v(S)

whereuS e[0,1] , ¥ S. This allows us to "mol1lify" different coalitional

values to a greater or lesser degree than others. In particular, if

Hg = +%+, we call the associated w(S) a "homomollifier."

It is again immediate that w(@#) = 0 and w(N) = v(N) for any
mollifier w of a game v. Mollification also is additive and preserves
strategic equivalence.

v

Theorem 2.4: Let w', w' and w? be mollifiers of the n-person games u, Vv

and g, respectively, with g strategically equivalent to v. Then
(1) WV oa Wl e,
(i1) w? is strategically equivalent to w'.

Constant mollifiers are not necessarily superadditive, but do

possess some attractive properties.

A




Theorem 2.5: Let wu be a constant mollifier of a game v.
(i) If v is constant sum, then wu(S) = v(S) for all uef0.1].
(ii) If v is superadditive, then
(a) W, (S) is linear and monotone non-decreasing inu.

(b) if w is superadditive, then Wi is superadditive

H1
for all Ho < My
(c) the core of wllis contained in the core of v.
Coalitional mollifiers, however, are superadditive and constant
sum if one imposes some reasonable conditions on the weights Mg
Theorem 2.6: Let w be a coalitional mollifier of a superadditive game v.
(i) If the weights Ug satisfy Mg tUT T HgyT whenever SNT = @,

then w is a superadditive game.

(ii) If in addition to (i) py = 1, then w is a constant sum game.

3. THE HARSANYI-SELTEN VALUATION FUNCTION

An n-person game in normal form is defined by a set of players
N =1{1,2,...,n} where each player i has a strategy set Hi and a payoff
function Mi defined as a mapping from the product of the strategy sets
into the real numbers. Thus, Mi : Hl X Ty X ... X Hn —> R.
If each player k selects strategy M € Hk’ then each player i receives a
payoff Mi( Tys Tpseees nn).

If we assume that the payoffs to each player are in the same
transferable utility, then each subset SSN has a payoff function
iZC:S Mi("l’ Tos wees nn) where each player k uses strategy M € T The
set of joint strategies for subset SCN is defined as the product of the

strategy sets of the members of S, and is denoted by IIS ; a particular

joint strategy is denoted by Tg-

W +

L e e wy
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An n-person game is normal form, denoted (M,IIN),is constant sum
if ;%:% Mi("N) = CV Ty € My and is zero sum if ¢ = 0.

for a constant sum normal form game (M,IlN) the associated
von Neumann-Morgenstern characteristic function [1953] is defined on the

subsets SEN by

A(S) = Max Min 1.4::5 Milmgs myog)-

g Tn-s

If the game is not constant sum, von Neumann-Morgenstern adjoin a fictitious
player whose payoff is the negative of the sum of the payoffs to the other
players, thus forming a zero sum game, and restrict the resulting characteristic
function to subsets SCN.

For a superadditive characteristic function game (N,v), consider
the normal form game (M V,SN) where

{T:TCN, ieT}is the ith player's strategy set,

_ . th
and SN S1 X 52 X vao X Sn. Then, the i

v
is My (T, Ty ooy T) = v(TS)
1’ 2 n i . - .th . .
lTil if Tj Ti V&e Ti’ the i*" player's choice

"

5

player's payoff function

]

v({i}) otherwise
This is the normal form game constructed in the inverse theorem of
von Neumann-Morgenstern. The characteristic function derived from this

game is the original characteristic function v, i.e.,

S; Sy el .

where syeSp and sy re Sy g
Thus, for each normal form game (M, HN) there is an associated

characteristic function game (N, v"), and for each superadditive

characteristic function game (N, v) there is an associated normal form

game (MY, Sy)-

» cae




For games in normal form a modified concept of characteristic
function was advanced by Harsanyi [1959] and Selten [1964] that is
supposed to be sentitive to "threats" that the classical max-min
definition overlooks. *

We denote by M* the maximal total payoff, j.e.,

M* = Max M, {(m, ).
1 :E: i*'N
N ieN 4

This modified characteristic function, denoted h(S), may then be defined

by the two conditions

(i) h(S) + h(N-S) = M
(3.1) N )
(i1) h(s) - h(N-S) = &

where AS is the minimax value of the two person zero sum game between

coalitions S and N-S in which the payoff to S is the difference
I
ie$S ieN-S

This characteristic function h is obviously constant sum and

M where vV is the classical

M

(as shown latér) satisfies v < B_i v
von Neumann-Morgenstern characteristic function and v is its complement.

A question posed by Shapley is whether there might be a simple,
"natural” way to construct a normal form game whose classical characteristic
function would be a given (superadditive) function v, and whose modified
characteristic function ﬂ would be a mollifier. The following theorem
shows that this is indeed possible using the construction given by the s
von Neumann-Morgenstern inverse theorem. Moreover, the'resultant
modified characteristic function is in fact a, constant mollifier.

Theorem 3.1: Let (N,v) be a superadditive characteristic function game and

(mY, SN) the associated normal form game. Then

3
(i) the classical characteristic function of (MV,SN) is V, ?

- ves v 4

L e -




and (i1) h, the Harsanyi-Selten modified characteristic function of
(MV,SN) is a constant mollifier of v withu= %, i.e.,

R(T) = 3 v (T) + 4 v (T), v TEN

Proof: Since h(N) = Max 3" MY (sy) = M = v(N), it follows from (3.1) that

SN jeN

h(T) = v(N) + Ay
2

and
h(N-T) = v(N) - &y
— .
The proof will be complete if we show that
by = v(T) - v(N-T)  (=%(T)).

Let §T be the joint strategy where each player icT chooses strategy T. Then

:z: MY (ST’ SN- T) ;E: ITI = v(T) for any strategy SN-T.
ieT ieT

) Accesmian Pog "‘/r
Considering next this fixed Sys We see that

|

T IS CRAAT -

‘ ¢ A3 E' :
Max Z M (ST’ SN T) = v(N-T) Uneemiouncag "

- N Justie o~
SNop ESNop  fEN-T ‘»_‘:__jfj:‘&“:- —
i By o
Thus, _.Q_Lg,gﬂbuttvl . ”
VT) - V(N-T) = v(T) - Max 2o MY (. sy o) pAratiani i oo
SN-T ieN- T , f‘1=1?0 ;o1 T
ibﬂt | sbecial "
= Min [v(t) > M (5ps syp) ' |
S jEN-T
N-T ’
- tin En<s,s ) - oM (s T
T* SN-T &
SN-1
< Max Min [Z M (ST’ SN_T) = E
ST SN'T 1Ef ieN'T
= AT

Simitlarly, v(N-T) - v(T) < AnoT -

mesy . g




Since dy_1 = -Ap, we have v{(T) - v(N-T) = Ap Q.E.D.

Theorem 3.1 shows that for a Targe class of games in normal
form the characteristic function implied by Harsanyi-Selten's definition
is in fact the average of the von Neumann-Morgenstern characteristic
function and its complement. Thus, a game with a superadditive characteristic
function can have a non-superadditive Harsanyi-Selten valuation function
as the following example demonstrates.

Consider the characteristic function v(1) = v(3) = 5,

v(2) = 14, v(12) = v(23) = 20, v(13) = 10, v(123) = 30 whose complement
is v(1) = v(3) = 10, v(2) = 20, v(12) = v(23) = 25, v(12) = 16, and
v(123) = 30. Even though v is superadditive (and has non-empty core),
the Harsanyi-Selten modified characteristic function is not superadditive

since

hy () +hy(2) =2+ 338550 o).

'y e YV

In'Fact,'fér this example, hu is not superadditive for any u>1/6.

“In the next section, we extend the mollifier concepts of section 2
to games in normal form, and show that the homomollifier in this extended
theory, 1n contrast to the Harsanyi-Selten construct, is both constant

sum: and superadd1t1ve
e

4. PAYOFF MOLLIFIERS FOR NORMAL FORM GAMES

For 4 general sum n-person game in normal form (M, HN), the

associated two person game between coalitions S and N-S will also be a
general sum game. In such a case, a coalition's desire to make a gain
may be tempered by its wish to inflict a loss. That is, should coalition

S choose its joint strategy according to Max Min :E: M, ( > TN S é C
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Min Max :E: M. (s Ty &)
Mo My o duNes Vo > N-ST7
S °N-S g

Alternatively, coalitions S and N-S could choose to cooperate
and form the grand coalition. This possibility for cooperation should be
taken into account.

As before, let M* denote the maximal total payoff, i.e.,
M* = Max :E: M. (nN). Then the maximal share of M* that coalition S

My ieN !

could legitimately claim as payment for cooperation with N-S is given by
(4.1) Max Min M* - Z M. (mes My o)

M. T ieN-s 157 NS

S °N-S -

We therefore define the characteristic function of (M, HN), an

n-person game in normal form, by F

M
(4.2) v(S) = Max Min Z Mi ('rrs, HN_S)
Mg lNy.g €S

and the complement characteristic function of (M, HN) by

M

(4.3) v(S) = Max Min |[M* - :E: M, (me,my o) | -

i V'S?N-S
Mg Ty_g 1eN-S

In section 2 the complement v of a characteristic function v was

defined by  v(S) = v(N) - v(N-S).

The following theorem shows that this definition is equivalent to (4.3), hence
the relations between v and v proved in Charnes-Rousseau-Seiford [1978] are

valid for vM and ¥ defined by (4.2)and (4.3). ‘

Theorem 4.1: v(s) = v'(N) - VM(N=s)

T R T T A e e e e —— e s i
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’ -
: Proof: VM(S) = Max Min | M* - :E: Mi (WS, ﬁN-S)]
HS “N-S jeN-S
= k. . 3 -
| M w1n yax ':§;S Mi (NS"N—S)
: 1o Mg i€
= Max }E: M. () - Min Max :E: M. (mes™y_ o)
I 1eN ! N Mo T jeNes VS N-S
~N o AS IN_S
M .
=) - MinMax Do ML (e, my o). J
n ienes 1 o7 NS

Since vM(N—S) = Max Min :E: Mi (ns, WN-S)’ the proof is completed by

HN-S HS jeN-S
applying the minimax theorem to the two person zero sum game between S
and N-S with payoff (to N-S) :E: M. (ns, N S) . Q.E.D.
johN-§ T }

As in section 2, we remark that any reasonable "goal" of
coalition S should 1ie between VM(S) and VM(S). Thus, any characteristic
function which attempts to model a game in normal form should lie between

W ana WM. By theorem 4.1, if we mollify VM

and v as characteristic
functions, we would obtain results identical to those of section 2, and
our theory would have failed to capture the "normal form" structure of
the game.

Therefore, for games in normal form, we first mollify the
payoffs and then construct a characteristic function from these mollified
payoffs.

As motivation for the general case, we first reexamine Harsanyi-

Selten's modified characteristic function (Cn with n= %, in Selten's

notation) given by

(4.4) h(S) = iM% + 3 Ag

T e e s e et PRI~
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or equivalently by

(4.5  R(S) = Max Min |4 25 M. (ng, my ) + 3 (M= D0 M. (ng, my )
4 i N-S . i *'S* 'N-S
Me T ie$S ieN-S
S °N-S

For conciseness, we frequently will omit the arguments mg and NS
from the payoff functions; our meaning, however, should be clear.

Note in (4.5) that h is obtained from the average of the two j
payoffs used indefining vM and VM. It can be shown that h(S) is the Nash
arbitrated threat solution for the two person game between coalijtions S and

N-S with payoff functions 2: Mi and }: M » under the assumption of
ie$S ieN-S !

linearly transferable utility between the two players at the rate 1:1.

This rate does not seem reasorcble; a dollar should be worth more to a

smaller coalition that to a larger one. A more reasonable assumption

might be a linear transfer of utility between S and N-S at the rate [S| : |[N-S[.
Under this assumption, the Nash solution is given by

(4.6) Max Min —2—(2—5 [(“—né) E M+ (ﬁ)(m* Z‘ Mi)]
1 ieS jeN-S

s Tn-s

where s = |S|
Observe that the payoffs used in defining vM and VM are them-

selves mollified in (4.6). V2, therefore, define a payoff mollifier,

denoted h(S), as any characteristic function which results from the

mollification (convex combination) of the payoffs used in defining vM and

VM. In particular, a constant payoff mollifier is defined by

(4.7)  h (S) = Max Min [(1 DY My + u(mr - 2. Mi)]
H Mg My_s ies ieN-S

—_a_ —

[ OTEVE

where nef0,1],

-
-—as v W

and a coalitional payoff mollifier is defined by
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(4.8) h(S) = Max Min [(1-‘15) ) My *+ug (Mx - > Mi)]
Mo Ty o ies ieN-S

where pg e[0,1] ,v s.

Since the payoff functions used in defining a payoff mollifier
lie between those used in the definitions of vM and VM, we immediately
have the following theorem.

Theorem 4.2: Let h(S) be any payoff mollifier for the n-person normal

form game (M, HN).

Then (1) M) = nip) = Mgy =0
Gi) VM) = ) = M) = e
(i11) vM(s) < n(s) < M(s), v sen.

We note from (4.5) that Selten's construct ﬂ(S) is a constant
mollifier (=h%(S)) and is not generally superadditive. In view of this
and the unreasonable transfer rate for utility assumed, we examine more
closely the payoff mollifier suggested by (4.6).

We define a payoff homomolilifier as the payoff mollifier for

which the weights are given by Bg = +%+ . This payoff homomollifier will
be the Nash arbitrated threat solution under the assumption of linear
transferability of utility at the rate |S]| : [N-S| . In addition, as shown
by the following two theorems, the payoff homomollifier will always be a
constant sum superadditive characteristic function,

Theorem 4.3: Let h(S) be a coalitional payoff mollifier of (M,]TN). If

the weights are additive for disjoint coalitions, i.e.,

Mg * up = ugyp  Whenever SNT =@, then h(S) is superadditive.




joint strategies, we then have

!r?ax Ilgin MS (ﬂ ™ S) + I[Max Min M (WT’"N-T)
S 'N-S T N T

= MS (n* nNtS) + MT (T, TTN-T)

M (T8 By Ty gy M (B, T R G

Mgyt (i Ty o)

EMutTsyr syt = Max Min Mgy (7o sy 1)
SuT "N-suT

Therefore, h(S) + h(T) < h(SUT).

13
Proof:
h(S) + h(T) = Max Min [ -uS) M.+ “S M M. )}
HS HN-S icS ieN-S
+ Max Min [(1-11 Z M] * g (Mx - M )]
HT HN-T jeT
=(S+uT)M*+MaxM1n[(1—u)ZM-us M]
HS N-S ie$ ieN-S
+ Max Min }:M - Up Z Mi]
HT HN-T ieT ieN-T
h(SUT) = Max  Min [“"‘SUT) oM g (e o Z Mi)]
Tsut Mn-sut eSUT leN-SUT
=y M* + Max Mm
SUT (1-u ) Z M.-u M,
Tyt Ty- sur[ SUTTiestr 1 SUT 4eiRur 1 -
Now let Mg = r(1-us) Z My - Ug z M.
{ ies ! jeN-§ !
-
LI S LR LY
3 ieT jeN-T
and M =} (1-m ) E M. ~u Z M.
SuT i SUT® &gt i SUuT iEN-SUT |
Then MSUT = MS + MT .

If (v ¥ T *S), (TTT, N- T) and (“SUT’“N-SUT)”e optimal pairs of

Q.E.D.
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Theorem 4.4: If in addition to the assumptions of Theorem 4.3 My = 1,
then the coalitional payoff mollifier h{S) is constant sum.
Proof:
n(S) + h(N-S) = Max Min [lu ) 2o M g (M- Do M)
il 1e$S ieN-S
S N-S
* Max M1n[(l VD DR :E; M,)
N-s s ieN-§ | 1€
= ug M* + Max Min (1-1g) :E: M, - Mg :E: M.
LU ies ! iEN-S !
S N-S
+ M*+Ma>{ M1n[1uNS) Z M. - Ms E Mi]
N S S iEN-S i€s
=(us+uN S) M* + Max Min 1uS)ZM - Mg E M.
- M. ies ieN-§ !
S "N-S
+ﬁ4ax IP{hn[US Z M, - (l'us) Z Mi]
N-S 'S iEN-S i€S
= % 9 - -
(US + UN-S) M* + lI‘?ax Irthn [(1 US) Z M1. Mo Z Mi
S N-S i€s iEN-S
- 1P_Ihn Il‘?ax [(I-US) Z M]. - US M]. ]
N-S 'S i€s iEN-S
= uy M* = M* = h(N). ' Q.E.D.

We note that the constructicn of payoff mollifiers for a normal
form game difﬁers from the construction of mollifiers for the characteristic
function derived from the game. In the former, the max-min operator is
applied to a convex combination of the two payoff functions, while in the
latter, one takes a convex combination of the two max-min values. Though,
in general, these two constructions will lead to different values, the

following theorem provides a partial answer as to when the constructions ;

coincide.
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Theorems: Let (N, v) be a superadditive characteristic function game
and (MV, SN) the associated von Neumann-Morgenstern rormal form game.
Then both mollifier constructions coincide, i.e.,

w(S) = h(S) v SEN

Proof: The key to the proof lies in the observation that the construction
of MY is such that the payoff to a particular coalition depends only on

the strategies of the members of that coalition. Thus, for a particular

MY (m) 3 :E: Miv (mg» my_g) is constant for all my celly -
ieS

Hence, it follows that for any S

h(S) = Max Min [(1 - 1) :E:M + ug ( MY - :E: Miv)]

I Ty_s ieS ieN-S

= Max Min [(1 - US) MSV (M) + ug (Mv* N S (“N-S$]

g My_s
- _ V*_ v
= #ax (1 - ) MS (mg) + M1n Hg (M Me-s ("n-s))
s Ty-s

= (1 - 1g) v(S) +ug v (8)

= w(S). Q.E.D.




» |
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take account of coalitional sizes.

Our extended *homomollifier® concept does and always yields a superadditive

constant sum characteristic function.4—~\\

possibilities yields a constant mollifier. In general, it can be non-superadditive

i N . LS

-

DD M. 1473 (race 1) Unclassified 19 7
S/N 0101-807-80811 curily Classificanon o
cgee

A-31




/R

Unclassified

Security Classification

KEY WORODS

LiINK A

LINK B

LiNK C

ROLE

wT ROLE

wT

ROLE wT

Characteristic function

Normal form

Complement characteristic function
Constant mollifier

Coalitional mollifier
Homomollifier

Harsanyi-Selten valuation function
Constant payoff mollifier
Coalitional payoff mollifier

Payoff homomollifier

L

DD 2.1473 acx)

1 S/8 0102-0t4-6000

Unclassified

Security Classification

A=-31409%




